ATAA 2000-5349

REDUCING FLIGHT SOFTWARE DEVELOPMENT COST RISK:
ANALYSIS AND RECOMMENDATIONS

Jairus M. Hihn, Ph.D.
Hamid Habib-agahi, Ph.D.

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, Ca. 91109*%

ABSTRACT

This paper documents a set of recommendations for
reducing flight software cost risk as derived from a
detailed analysis of the underlying causes of the
observed cost growth. The results are based on a
detailed study of eight deep space missions that
experienced significant cost growth between 1995 to
1999. The average software development cost growth for
these missions was 51%. The approach used integrated
information gathering and synthesis techniques from
multiple methodologies, protocol analysis, affinity
analysis, focus groups and multi-voting. It is the
conclusion of this study that there will be an increase in
cost growth, schedule slips and software failures on
future missions unless the visibility and importance of
software at the project level is increased. Furthermore,
there must be a shift in focus from a hardware oriented
system design to the development of hardware/software
integrated system and subsystem architectures. Relative
to the way that NASA has traditionally built its
spacecraft the most significant recommendation in
support of these objectives is the creation at a project
level of software system management position with
oversight and authority over ground and flight software

1.0 INTRODUCTION

The Jet Propulsion Laboratory (JPL) is a US
Government Federally-Funded Research and
Development Center that is run by the California
Institute of Technology for the National Aeronautics and
Space Administration (NASA)1 JPL’s primary role is to
conduct unmanned, robotic space exploration missions
throughout our solar system. JPL has a long record of
successfill deep space missions from Explorer to
Voyager, to Mars Pathfinder. JPL’s experience and
success as with the rest of the aerospace industry is built
upon our hardware and system level expertise. The

* Copyright ®© 2000 by the American Institute of
Aeronautics and Astronautics, Inc. The U.S. Govern-
ment has a royalty-free license to exercise all rights
under the copyright claimed herein for Governmental
Purposes. All other rights are reserved by the copyright
owner.

majority of JPL’s, as well as other acrospace organizations,
current managers and system engineers have made their
reputations on these hardware intensive spacecraft. Only
recently has software become more important in its
contribution to spacecraft risk, integration and labor cost,
therefor more emphasis on software development
management and planning is required.

2.0 BACKGROUND

JPL, along with the rest of NASA and industry, is
actively engaging the “faster, better, cheaper” philosophy.
The first “faster, better, cheaper” mission was Mars
Pathfinder. It was 70% less than the average cost of JPL’s
major space missions from 1964 to 1994. In addition, the
frequency of missions launched has dramatically increased,
from the historical rate of about one mission every two years
to multiple missions launched every year. This shift has
required major changes in the way JPL does business and is
creating some institutional strain as the organization finds
ways to adapt.

In response, JPL is undergoing a radical redefining of its
development processes to provide future missions the means
to achieve the goals of “faster, better, cheaper”. The focus of
these activities until very recently has been primarily on
improving the development process and tools for hardware
employing concurrent engineering and information
technology. Also underway is what appears to be a very
successful shift towards incorporating off the shelf hardware
for many mission components. However, during this same
time of seeking new ways of doing business, spacecraft have
become more software intensive.

This paper reports the final results of a detailed study of
eight missions that experienced significant cost growth
between 1995 to 1999'. A summary of the high level causes
and proposed flight software cost risk model is reported in
Hihn and Habib-agahi®. In this paper the underlying causes
of the cost growth are identified. Based on a detailed analysis
of the software cost growth causes a set of policy
recommendations are proposed.

1

The American Institute of Aeronautics and Astronautics Inc.

3.0 METHODOLOGY

3.1 Sample Definition

In order to limit study cost and time, it was decided
not to make an exhaustive or stratified survey of all flight
software under JPL management.

Missions were included in the study based on the

following criteria:

e Cost growth had to exceed 20% of plan at PDR in
the last 3 years, except one mission had to be
included that stayed within its budget

e At least one ground support software development
task had to be included

e A mixture of in-house and subcontracted missions
had to be included.

e Participants were chosen based on having worked
extensively on the selected missions

3.2 Data Collection Methodology

The data collection methodology was relatively complex
consisting of multiple steps:
1) Interviews
a) Unstructured Interview based on Protocol
Analysis to obtain self reports of what happened
on specific missions
b) Follow up Structured Interview to verify how
self reports had been categorized and to identify
missing information
2) Workshop: Cost Growth Causes. A focus group to
brainstorm underlying causes of software cost
growth based on interim findings from the initial
interviews
3) Multi-voting to verify top cost risk categories
4) Workshop: Policy Recommendations. A focus group
to review and finalize JPL strategic software policy
recommendations

3.2.1 Interviews

The two interview sessions consisted of
approximately 60-90 minutes each. The interviews
primarily focused on a single selected mission. Two to
three persons conducted both interviews. One
interviewer functioned as the main scribe and
interviewer, the others as backup to reduce the likelihood
that information was lost or a potentially important point
was missed. The approach used is a modification of the
Protocol Analysis methodology”. It translates self-
reports into ordinal data by grouping descriptive
information into categories.

The first interview was relatively unstructured and
consisted of only four basic questions. The open ended
interview questions were designed to elicit information
concerning what was working and not working within
the selected mission/project. Detailed notes were taken
from each interview, which were transcribed and used as
the information source from which data could be derived.

The interviewees typically responded to the questions by
describing specific events or behaviors that supported their
response and illustrated their issues or concerns.

The questions for the first interview consisted of:

1. Identify mission, mission objectives, and interviewees
mission role

2. Describe the main causes of the software development
cost growth experienced on your project

3. (Identify the top three software development cost risks
based on your experience

4. Describe what you will do differently, to reduce the
software development cost risks you identified

After the interviews were completed and transcribed, the
responses were reviewed and systematically grouped into
common themes, which resulted in the identification of 7
major cost growth risk areas or categories. After developing
a first draft set of causes and potential recommendations, a
second interview with the same group was initiated in order
to review how their information had been mapped into the
identified cost growth categories. The respondents could
modify the information, add new information, delete
information and even add new categories. In addition, the
participants were asked to provide a subjective estimate of
the overall cost growth as a percentage of the budget/plan at
the time of the Preliminary Design Review (PDR) and the
percentage contribution of each cost growth category. The
tables were updated based on the information provided by the
participants. The analysis was performed based on this
information. An example of a cost risk table from an actual
interview is displayed in Figure 1.

3.2.2 Workshop: Cost Growth Causes

A four-hour workshop was scheduled to which all of the
respondents were invited; in addition several members of the
Center for Space Missions Information and Software Systems
(CSMISS) team were also invited to join in. The objective of
the workshop was to verify the results of the information
gathered in the previous interviews and to identify a more
detailed list of causes for cost growth, To help the
participants generate a more detailed list of cost growth
sources the participants were repeatedly asked, why a cause
existed. The question of “why” continued to be answered
until no new explanations were forthcoming and then the
group moved on to the next cause that had been previously
identified (See example below). Participants also categorized
the causes by whether they primarily were due to a problem
with JPL’s processes, Tools & Methods, people/teams, or
culture.

2

American Institute of Aeronautics and Astronautics

Risk Area

Percentage
contribution to
cost growth

Participant Statements Grouped by Risk Area

Experience & 10% System engineers had extensive HW experience but had limited
Teaming SW experience
Managers were HW oriented and had insufficient understanding of
SW
Planning, Estimation 50% Software development cost was underestimated because (1) had
& Control assumed too much inheritance and (2) had underscoped effort
partly because had not accounted for code growth.
Requirements & 10% Did not have sufficient traceability between system and SW
Design requirements and also had no process to feed back information as
learned more about SW requirements,
15% Insufficient testbeds

Testing

Simulators were not ready until late in lifecycle, which delayed
testing
Testbeds lacked capability (sufficient functionality)

Software Inheritance

included in

Assumed software inheritance of 30% from a previous mission but

planning ended up inheriting less than 5%.
Tools & Methods 10% Missed some test results because had bad analysis tools
Staffing 5% Persistently under staffed.
TOTAL Cost 50% Project completed with 50% cost growth in software development
Growth COSts

Figure 1: Example Cost Risk Table Used in Interviews

An example sequence was:

Software Cost Growth Cause (from interviews):
There is a lack of software experience in the project
office.
Why? Many managers and system engineers have
limited software experience
Why? (1) Most managers and system engineers grew
up’in a hardware world.
(2) Managers and system engingers do not
view software engineers as broad €nough.
Why? (1) JPL has a very mature and dominant
hardware culture
(2) The software culture is still in the process
of maturing

3.2.3 Multi-Voting

The objective of this part of the study was to identify
a set of key policy recommendations especially from a
strategic perspective that would address the largest
percentage of the software risk areas. Strategic
recommendations are actions that require institutional
support. Tactical recommendations are actions that
missions can implement without direct institutional
support. The approach used was to send out an Excel
worksheet that contained two voting forms to the
participants, sec Figures 2 and 3.

The first voting form, see Figure 2, requested that
the participants allocate 11 votes in response to the
following questions, “Which risk areas do you think are
the most important for JPL to address?” (Strategic) and

“Which risk areas do you think are the most important for
project managers to consider?” (Tactical). The objective was
to verify that the top risk areas that had been identified in the
earlier parts of the study had not changed after the extensive
discussions. The identification of the top risk areas is used to
narrow the search for the key policy recommendations.
Participants were asked to allocate n+1 votes over n
recommendations.and then to specify whether they perceived
the difficulty of implementing the recommendation as hard,
medium or low. There was one form for each of the eleven
risk areas.

The second voting form grouped the 46
recommendations by the risk areas with which they had the
highest affinity. The participants were asked to allocate N+1
votes over each grouping of the recommendations, where N is
the number of recommendations in the set. In addition, they
were asked to rate the ease of implementing the
recommendation as Hard, Moderate, or Easy. See Figure 3
for a sample of the voting form used. These results are then
used to actually identify the top recommendations in the top
risk areas. It is from this reduced set of recommendations
that the policy statements are derived.

3.2.4 Workshop: Policy Recommendations

A second workshop was held jointly with the Center for
Space Missions Information and Software Systems
(CSMISS). The objectives of the workshop were to (1)
Review and verify the proposed policy recommendations; (2)
Verify that all relevant recommendations from this study
were included in the CSMISS software principles as
appropriate.

3

American Institute of Aeronautics and Astronautics

Directions: You have 11 votes for each question, which you may
allocate in any manner that you wish. For example, you may
place all the votes on one Risk Area, spread them equally, or any
combination in between as long the total number of votes adds to
11

Which risk areas |Which risk
do you think are |areas do you
the most think are the

mportant for JPL. [most important
for project
managers to
consider? Enter
number of
votes below.
Q2: Tactical

Risk Area

Q1: Strategic

1. Experience

2. Teaming

3. Control

You have 4 votes to |Please rate your
allocate over the perception of the
following degree of difficulty in
recommendations. |the implementation of
Please allocate them|each recommendation.
to indicate your Use

perception as to the |3 for High,

importance of 2 for Medium
implementing the |1 for Low.
recommendation
Recommendation Importance Ease of
Implementation

Project office needs to
have some SW expertise

Everyone should have
some mission level
training to provide end-
to-end understanding of
the system

4. Planning and Estimation

S. Software Reuse

6. Architecture

7. Software Volatility

8. Staffing
9. Tools & Methods
10. Test Beds and Test Tools

11. Testing Practices

TOTAL VOTES

Figure 2: Multi-Voting Form Used to identify Top
Risk Areas

4.0 DATA SUMMARY

A total of 11 managers and engineers provided
information for this study. They held a variety of
positions from Technical (Cognizant Engineer) to Project
Manager. The study included software from 8 missions
out of 24 that were currently either in development or
operations. There are six flight and two ground systems
with some having completed implementation and some
still under development; three were subcontracted; and
only one of the missions included in the study has not
exhibited any cost growth ¢

This shows that the average cost increase for
projects that experience cost growth, is 51% with a range
of 25% to 71%, excluding the highest and lowest
observations. Of course, one should not conclude that all
flight software developments would exceed their PDR
plan by 50% based on the results of this study. The
sample size is small and the flight software tasks were
preselected based on the condition that they had more
than 20% cost growth (except for one) over the plan at
PDR.

Software team needs to
understand the system

Need system engineers
who understand SW

Figure 3: -Multi-Voting Form Used to Identify Top
Recommendations

5.0 FLIGHT SOFTWARE
COST GROWTH CAUSES

5.1 Flight Software Cost Growth Sources and Impact

Based on a categorical analysis of the data a number of
key risk areas were identified. These areas are; Experience &
Teaming, Planning, Requirements and Design, Testing,
Software Inheritance, Staffing, and Tools & Methods.

Figure 4 contains a summary of four different
perspectives from which to rank the importance of each risk
category.. Here it can be clearly seen that from each of the
perspectives (frequency of occurrence, estimated impact,
strategic importance, and tactical importance) that the top
three sources of flight software cost growth are: Planning,
Requirements & Design, and Experience & Teaming, which
represents approximately 70% of the potential sources of cost
growth. See Hihn and Habib-agahi1 for a more extensive
discussion of the high level sources of flight software cost
growth. The next step is to more fully explore the underlying
causes associated with these risk areas.

4

American Institute of Aeronautics and Astronautics

Which risk areas do
Frequency of Estimated Which risk areas do you think are the
Risk Area Occurrence Contribution you think are the most important for
(% of Projects) To Cost Growth most important for | project managers to
JPL to address? consider?
Planning
(incl. Control) 1% 35% 28% 28%
Requirements
& Design (incl. 57% 25% 15% 13%
Architecture & SW
volatility)
Experience & 71% 10% 20% 25%
Teaming
Testing 71% 15% 14% 10%
Staffing 1% 10% 7% 10%
Software 57% Incl. In Planning 11% 3%
Inheritance
Tools/ Methods 86% 5% 5% 6%

Figure 4: Summary of Software Cost Growth Sources by Importance

The results of the multi-voting process were used to
identify which of the top risk areas could be mitigated by
the projects independently and which required JPL level
support. Several changes in the risk areas were made for
this step as a result of the discussions in the Policy
Recommendations Workshop, Experience and Teaming
were separated, Requirements & Design was converted
to System and Software Architecture. The top three risk
areas received over 50% of the votes. The results show
that the most important risk areas to address from either
a strategic or tactical perspective are almost identical.
The differences are that software inheritance is seen as
primarily requiring institutional support while staffing
and control problems can be dealt with by the projects.

5.2 Detailed Identification of Software Cost Growth
Causes

Based on the results and follow-on discussions with
the participants it was decided to focus on the top five
strategic risk areas:

Planning

Requirements & Design
Experience & Teaming
Testing

Software Inheritance

M

Figure 5 provides a summary of the results of the
workshop discussion on the detailed sources of flight
software cost growth for the top five risk areas. The
identified causes are primarily "process” related, then
"people & team” and last are "tool" related causes.
Sixteen Process related causes were identified, which are
associated with 4 out of 5 risk areas. The process related
causes are diverse, however, a common theme that runs

through many of them is that software is not receiving
sufficient visibility at the system level or early enough in the
lifecycle. More specifically, the causes identified were
related to: starting planning and requirements & design
activities too late in the lifecycle; insufficient review of the
software plans and design in the early phases of the lifecycle,
especially with respect to software inheritance; and lack of a
fully integrated hardware/software system architecture.
Thirteen People/Team related causes were identified, which
are associated with all 5 of the risk areas. The People/Team
causes expand upon the issues already identified in the initial
interviews, lack of sufficient software experience on the part
of management and system engineers and also a lack of end-
to-end mission experience on the part of the software
engineers, which is further compounded by communication
breakdowns between the hardware and software engineers.
This analysis does reveal that these problems with experience
and teaming play a significant role in reducing software cost
risk in all categories. Nine Tool & Methods related causes
were identified, which are associated with 3 risk areas. The
most critical items relate to the lack of availability of testbeds
and also incorrect assumptions with respect to the ease of
inheriting software and incorporating COTS.

5

American Institute of Aeronautics and Astronautics

Risk Area Cost Growth Causes
Cost Growth Sources Process People/Teams Tools & Methods
¢ Poor planning and No generally accepted planning process for * SW team not included in early stages of * Poor and constantly changing
estimation practices software development.; planning 1s largely planning assumptions and cost estimation methods
¢ Insufficient reserves for dependent on the individual engineer (preparing | ¢ SW not recognized in initial planning o Lack of software planning tools
Planning SW the plan) e Lack of SW cost metrics.
Uniqueness of software not captured in initial
stages (functional to deliverable)
SW requirements and design are more volatile
& solidify later than hardware in the life cycle.
Don't know how to freeze software requirements
the same way we know how to freeze hardware
requirements
* Lack of good architecture Subsystem view of spacecraft -- not viewed as o No awareness or recognition even at the
and system partitioning important to have a top-level architecture early mission & system level that software needs
¢ Systems decisions made in the project. to be addressed.
Requirements without accounting for Software design is traditionally done at the ¢ Don't view architecture as a software
& Design impact on software subsystem level (based on hardware intensive process

perspective)

Architectural issues are not sufficiently worked
out in Phase A/B

Concurrent development can lead to interface
problems due to lack of communication between
teams especially when there is schedule
COmpIession.

Experience &
Teaming

¢ Insufficient software
experience among
managers and system
engineers

¢ Poor teaming between
HW/ SW and
systems/SW team

¢ Management and system engineers have
limited SW experience

e Engineers grew up in a hardware intensive
world.

e Managers and system enginders do not view
software engineers as broadnough.

o Lack of software-system engineers

¢ Software culture is underdeveloped at the
present

Testing

¢ Testbeds; too few, too
late, not validated,
insufficient capability

e Lack of early test
planning; lack of
functionality,

Lack of sufficient funding.

Testbeds not listed in WBS; not accountable.
Lack of sufficient schedule or recognition of the
importance of testing.

"Big Bang" style testing waits until end to test.
Test documents not in place until late in life
cycle

¢ Lack of education & appreciation of value
for testbeds.

e Test team not in place until late in life cycle

o Integration and SW teams not available to
support ATLO

| ® Dependence on hardware testbeds.

e Lack of tools and under utilization of
existing tools
o Lack of controlled tests and test data

Software
Inheritance

e Inherited code did not
behave as advertised, was
poorly documented, and
required more
modification than
expected

Lack of software inheritance review process.
Inheritance not distinguished between reusable
code and code that has not been designed for
that purpose. Inheritance (typically) only reuses
the design.

No incentives for projects to develop fully
reusable code.

¢ Many projects fail to bring onboard the
original developers when they attempt to
inherit software

¢ Too many advantages of inheritances
assumed, esp. cost savings

¢ Cost models don't properly account for
COTS, sw inheritance and modification..

* Too often assumed that COTS costs are
free

Figure 5: Top Five Risk Areas: The Causes Flight Software Cost Growth

6

American Institute of Aeronautics and Astronautics

Risk Area

Summary of Reported Recommendations

Experience &

eNeed project managers & system engineers who understand SW

Teaming sSystem engineers need to understand that SW provides the system level interfaces
*Project office needs to have some SW expertise
eNeed to build a team that can work together and communicate (includes cross hardware/software)
*PMs need to be able to identify staffing problems early

Planning sNeed a focused end point with clear success criteria

eNeed better tailored risk management with contingency plans

¢ Need a plan you can track and hang your hat on based on a complete lifecycle

*SW must have an early presence even in pre-Phase A and be part of an integrated plan

o Allocate larger reserves to SW

*Require that a clear understanding of SW be included as part of NAR approval

® Need more detailed planning and tracking of SW similar to HW

* When putting together a plan get inputs from everyone and negotiate. Add schedule slack but make sure all manager’s
know they are accountable

® Need to change rules of thumb. E.g., SW development vs. test used to be 50/50 now appears to be 15/85

Requirements &
Design

* Must have a development process that deals with evolving reqs & assumes things will break.
Early and extensive prototyping
Incremental deliveries & evolving documents
Isolate interfaces

e Identify standardized SW functions and put in HW.

eNeed good architecture to define demarcation between HW and SW.

*Do not look at SW as separate but see as an integrated design

® Get a baseline and CM in place so can carefully manage prioritized requirements

Testing e Need to have many and varied SW test environments
¢ Need to have a dedicated integration and a dedicated test team whose job it is to break the SW
* Testbeds and simulators need to be made a major product deliverable that is completed early in lifecycle
Software eNeed a software inheritance review
Inheritance sFor successful software inheritance, developers need to come with the software
Tools etc. ® Make sure target and development systems are the same
¢ Use design tools with proven record
» Get methodology and process in place before purchasing tools
¢ Need good test analysis tools
Staffing ® We need to go outside to get more expertise

e Software team needs to understand the system
ePlan to over staff SW engineers to deal with turnover
eNeed a mechanism to hire more SW people without elaborate hiring procedures

» Everyone should have some mission level training to provide end-to-end understanding of the system

Figure 6: Summary of Reported Recommendations by Risk Area

6.0 FLIGHT SOFTWARE
COST RISK RECOMMENDATIONS

Similar to the methodology used to identify the

causes of software cost growth, a multi-step approach

was used:

1. Identified a set of initial recommendations based on
indivigual participant’s responses,

2. Mapped recommendations into detailed risk causes
(list produced at the first workshop)

3. Select top five risk areas by multi-voting (see results
in section 4.1)

4. Identified key recommendations associated with
cach top risk area by muiti-voting

5. Derived a set of policies to implement the key

6.1 Initial

recommendations for each risk area (Verified
policies at second workshop).

Recommendations based on Lessons

Learned

During the initial interviews, participants were asked to

provide recommendations as to what needs to be done to
reduce the potential for flight software cost growth. Figure 6
contains a summary of the recommendations that were
generated during the initial interview sessions. The
recommendations that came up repeatedly (more than 50% of
the time) were:

7

Project managers & system engineers must have a better
understanding of software

More detailed planning and tracking of SW similar to
HW is required

SW must have an early presence even in pre-Phase A
and be part of an integrated plan

The software development process must deal with
evolving requirements & assume that the unexpected will
happen. This requires the use of:

Early and extensive prototyping;

Incremental deliveries with evolving documents;

American Institute of Aeronautics and Astronautics

Isolation of interfaces through layered and modular
design

It can be clearly seen that many of the
recommendations directly or indirectly relate to dealing
with software requirements volatility, partial and
incomplete information in the early phases of a mission,
as well as basic communication issues. The
communication issues are arising because the vast
majority of project managers and senior system
engineers came to maturity in a hardware oriented world,
while the software engineers frequently have a limited
understanding of the mission and spacecraft as a system.
Traditionally, there are also fundamental differences in
how system and software engineers develop their designs
and the way in which interfaces are described. This has
caused miscommunications on a number of JPL’s major
missions. Two different approaches are proposed for
dealing with rapidly changing software requirements that
is a natural part of an R&D project. One approach is to
try to obtain more detailed software requirements
information and complete more detailed planning earlier
in the lifecycle. The other is the use of a rapid
development approach that is based on the premise that
detailed software requirements do not exist in the early
phases of the mission lifecycle and that overly detailed
plans are counter productive.

6.2 Kev Recommendations Identified by Multi-Voting

A multi-voting approach was used to identify the top
recommendations corresponding to each risk area. All
participants were requested to identify their top
recommendations from the original set collected during
the interviews. Additional recommendations were also
added as a result of the analysis of the detailed cost
growth causes.

The list of the sixteen top recommendations is
displayed in Figure 7. Fourteen of the recommendations
received at least one or more votes from each participant,
within the top five risk areas, during the multi-voting
exercise. Two additional recommendations were
identified based on using a weighted voting algorithm
derived by combining the number of votes received by
each key risk area with the normalized number of votes
received by each areas respective recommendations.
These are recommendations 9 and 10 in Figure 7. While
the objective is to identify a number of key policy
recommendations that have been endorsed by the
participants, the complete listing of recommendations
should be reviewed, as all but a small number of
recommendations received at least one vote per
participant.

The key recommendations have been grouped into
three categories similar to those in Figure 5 in section
5.2. The categories are Process, People/Teams, and
Tools/Methods. The process recommendations focus on
earlier development of key design, software, test, and
management products and earlier and more frequent

reviews of software products and plans. The People/Team
recommendations focus on the need to have more cross
cutting experience in our project teams, and in bringing
software and test engineers on-board earlier in the lifecycle.
Only one recommendation in the Tools/Methods category
received enough votes, which related to the need for
institutional support to greatly increase the inheritance of
software between projects.

6.3 Policy Recommendations

The final step was to translate the key recommendations
into specific JPL software policies that can be implemented
by managers of future missions. While some of the
recommendations map very simply to a potential JPL policy,
many of the recommendations are a combination of what to
do and how to do things differently. They are also at
different levels of granularity. The list of key policy
recommendations, shown below, was finalized during the
second workshop.

The policy recommendations are grouped by whether
they primarily require an organizational change, product
change or process change. The main theme of these
recommendations is that the visibility and focus on software
must be raised to a much higher level. This issue arose time
and time again in all of the interviews and workshops and
requires significant changes in how we organize a project and
design our missions. These policy recommendations are
consistent with the dramatic changes we have seen in the
nature of spacecraft as software has come to play an
increasingly important role in spacecraft integration and
automation.

(A) Recommended JPL Organizational Policy

1. Require all projects-have a software system manager
with budget authority and responsibility over flight and
ground SW and reports directly to the project manager.
(The same as the spacecraft and instrument managers.)
Among others the software system managers
responsibilities include:

e Preparation of software cost estimates, plan, and budget
Development of software architecture by PDR

e Ensure consistency of software architecture and the
system architecture

e Ensure that software is considered in all design trades

e Supporting subsystem managers in planning,
development, integration, test, operations, and
maintenance.

¢ Coordination of operations, flight software, and ground
software.

e Determine how software will be managed within the
project and integrated within the overall project
implementation structure.

8

American Institute of Aeronautics and Astronautics

(B) Recommended JPL Product Policies

2. Require the development of a system architecture
supported by a software architecture that clearly
documents an integrated hardware and software
design prior to PDR.

3. Require the development of a management plan that
addresses software including a risk management
plan with reserve and contingency allocations based
on estimated risk prior to PDR.

4. Require the development of a test strategy and plan
prior to PDR.
(C) Recommended JPL Process Policies

5. Require a Software Inheritance Review similar to
the Hardware Inheritance Review (when
appropriate) prior to PDR and CDR.

6. Require that software requirements and architecture
be reviewed at the NAR.

7. Require that the software architectural designs be
reviewed at PDR and updated at CDR.

8. Require Risk Management Plan be reviewed at PDR
and updated at CDR.

9. Require Test Plans and status be reviewed at PDR
and updated at CDR.

7.0 CONCLUSIONS

A number of JPL managed missions have
experienced cost growth with respect to the flight
software portion of the mission. This has occurred for
both in-house and subcontracted missions. The results
from this study indicate that the sources of flight
software cost growth can be categorized into a small
number of basic risk areas with three accounting for 75%
of the cost growth, Planning, Requirements & Design,
and Testing. Two other key risk areas relate to Software
Inheritance and Experience & Teaming. The study
results also indicate that given the current software
development environment and approach, that software
development cost reserves greater than 30% are likely to
be required.

While this study is based on a small sample,
managers should consider paying more up front attention
to these risk areas during the planning phases of a
mission. A major implication of this study is that
missions need to increase the visibility of software at the
system and project level. Key recommendations
consistent with the study results are:

e Create a software position with budgetary
authority at the project office level,

e Develop an integrated HW/SW system
architecture supported by an integrated software
architecture

* Generate software design, plan and test
documents early with continuous review

L.

throughout the project development lifecycle phases.

e Review rigorously and early any planned software
inheritance and COTS usage, similar to the existing
hardware inheritance review.

BIBLIOGRAPHY

Hihn, J. and Habib-agahi, H. Flight SW Cost Growth,
JPL D-18660, Internal Document, January, 2000.

Hihn, J. and Habib-agahi, H. Identification and
Measurement of the Sources of Flight Software Cost
Growth, Proceedings of the 22" Annual Conference of
the International Society of Parametric Analysts (ISPA),
8-10 May, 2000, Noordwijk, Netherlands

Simon, H. and Ericson, K., Protocol Analysis; Verbal
Reports as Data, MIT Press, 1993

The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology
under a contract with the National Aeronautics and Space
Administration.

9

American Institute of Aeronautics and Astronautics

Risk

Cost Growth

Recommendations

Process People/Teams Tools/Methods
Area Sources
e Poorplanningand | 1. Need a focused end point with clear
Planning estimation success ctiteria
Estimation practices 2. Need better tailored risk management
& Control * Insufficient plan with appropriate contingencies

reserves for SW

3. Allocate larger percentage reserves to

software

e Lack of good 4. Require that a clear understanding of | 6. System Engineers need to
architecture and SW be included as part of NAR understand that the software provides
Requirements system approval the system level interfaces
& Design partitioning 5. Need good architecture to define 7. Do not look at SW as separate item
* i‘:;:mwftﬁslﬂs'ons demarcation between HW and SW but see as part of an integrated system
accounting for design
impact on
software
« Insufficient 8. Project office needs to have some SW
software expertise
Experience experience among 9. SW team needs to understand
& Teaming Managers and system'
system engineers. 10. Everyone should have some mission
* Poor teaming level training to id d-to-end
between HW/ SW g1o provide en ? en
and systems/SW understanding of the system
team B i
» Testbeds; too few, | 11. Testbeds and simulators need to be 12. Need to have a dedicated integration
Testing too ate, not made a major product deliverable that team and a dedicated test team
validated, lacked is completed early in lifecycle whose job is it to break the software
capability 13. Require a test engineer be a member
* Lack of early test of the early planning team and
planning; lack of .
functionality, reviews.
¢ Inherited code did | 14. Need a software inheritance review 15. For Inheritance people need to come | 16. To increase the amount of Inheritance
Software not behave as with the software between projects, need to create

Inheritance

advertised, was
poorly
documented, and
required more
modification than
expected

infrastructure to provide incentives to
develop reusable code and to
maintain it.

Figure 7: Recommendations in Top Risk Areas Receiving 10 or More Votes

1. Recommendation identified based on combining the key risk area and recommendations multi-voting results to provide a ranking of recommendations that crossed the risk areas.

10

American Institute of Aeronautics and Astronautics

